Elasticity Formulas
Complete List of Elasticity Formulae
1. Stress
Stress is internal force of reaction per unit area.
Numerically stress = \(\frac{\text { External force }}{\text { Area of cross sec tion }}=\frac{\mathrm{F}}{\mathrm{A}}\) N/m2
2. Strain
- Longitudinal strain = \(\frac{\text { Change in length }}{\text { Original length }}=\frac{\ell}{\mathrm{L}}\)
- Volume strain = \(\frac{\text { Change in volume }}{\text { Original volume }}=\frac{\Delta \mathrm{V}}{\mathrm{V}}\)
- Shear stain = the angel Φ by which a line perpendicular to the fixed face turns.
3. HookeΓÇÖs law
Stress ∝ Strain
E is modulus of elasticity = \(\frac{\text { stress }}{\text { strain }}\) N/m2
4. YoungΓÇÖs modulus of elasticity
Y = \(\frac{\text { stress }}{\text { longitudinal strain }}\)
= \(\frac{F / A}{\ell / L}=\frac{F L}{A \ell}\) N/m2
If F = Mg, A = πr2 (loaded wire)
then Y = \(\frac{\mathrm{MgL}}{\pi \mathrm{r}^{2} \ell}\)
5. Bulk modulus of elasticity
K = \(\frac{\text { stress }}{\text { volume strain }}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathrm{V} / \mathrm{V}}=\frac{\mathrm{FV}}{\mathrm{A} \Delta \mathrm{V}}\) N/m2
If \(\frac{\mathrm{F}}{\mathrm{A}}\) = pressure P then
K = \(\frac{P V}{\Delta V}\)
(a) If by a change of pressure dP the change in volume is dV then
K = -V\(\left(\frac{\mathrm{dP}}{\mathrm{dV}}\right)\)
(b) Isothermal modulus of elasticity of a gas KT = P
(c) Adiabatic modulus of elasticity of gas
Ks = ╬│P, ╬│ = \(\frac{C_{p}}{C_{v}}\)
(d) Compressibility is reciprocal of bulk modulus i.e., χ = 1/K
6. Modulus of rigidity
╬╖ = \(\frac{\text { stress }}{\text { shear strain }}\)
= \(\frac{\mathrm{F} / \mathrm{A}}{\phi}=\frac{\mathrm{F}}{\mathrm{A} \phi}=\frac{\mathrm{FL}}{\mathrm{A} \ell}\)
7. PoissonΓÇÖs ratio
- σ = \(\frac{\text { transverse or lateral strain }}{\text { longitudinal strain }}=\frac{\beta}{\alpha}\)
- The valve of σ lies between -1 and 0.5.
- σ = \(\frac{1}{2}\left[1-\left(\frac{\Delta \mathrm{V}}{\mathrm{V}}\right)\left(\frac{\mathrm{L}}{\Delta \mathrm{L}}\right)\right]=\frac{1}{2}\left[1-\frac{\Delta \mathrm{V}}{\mathrm{A} \Delta \mathrm{L}}\right]\)
8. Relations amongst various elastic constants (Y, K, ╬╖)
- Y = 3K(1 – 2╧â)
- Y = 2η(1 + σ)
- Y = \(\left(\frac{9 \eta K}{\eta+3 K}\right)\)
- σ = \(\frac{Y}{2 \eta}-1\)
- σ = \(\frac{3 K-2 \eta}{6 K+2 \eta}\)
- \(\frac{9}{\mathrm{K}}=\frac{3}{\eta}+\frac{1}{\mathrm{K}}\)
9. Work done in stretching a wire
The work done = Average force × change in length
or W = \(\frac{1}{2}\)Fl
10. Elastic potential energy
(a) U = W = \(\frac{1}{2}\)Fl = \(\frac{1}{2}\left(\frac{F}{A}\right)\left(\frac{l}{L}\right)\) (LA)
= \(\frac{1}{2}\) (stress × strain × volume of wire)
(b) Energy density or elastic energy per unit volume,
u = \(\frac{1}{2}\) (stress × strain)
= \(\frac{1}{2}\) Y(strain)Y(strain)2
= \(\frac{(\text { stress })^{2}}{Y}\)
11. Thermal stress
Thermal stress = Y ├ù strain = Y ╬▒ (t2 – t1) = Y ╬▒ ╬öt
Thermal Tension = YA ╬▒ (t2 – t1) = YA ╬▒ ╬öt
12. Torsion constant of wire
C = \(\frac{\pi \eta r^{4}}{2 \ell}\)
(a) Torque required for twisting,
τ = Cθ
(b) Work done in twisting by an angle
W = \(\frac{1}{2}\)C╬╕2
13. Frequency of vertical oscillations of loaded wire
n = \(\frac{1}{2 \pi} \sqrt{\frac{\mathrm{YA}}{\mathrm{mL}}}\)
Explore more concepts from the sought-after place for any Formulas i.e. Physicscalc.Com and clarify all your concerns instantly.