Created By : Naaz Fatima

Reviewed By : Rajashekhar Valipishetty

Last Updated : May 10, 2023


Quickly grab the opportunity and utilize the Laws of Motion Formulas to solve the related concept problems easily. Go through the Laws of Motion Formula Sheet & Tables and learn the concept in a simple manner. The Cheat Sheet of Laws of Motion includes Impulse, Motion in a Lift, Motion of a Block on a Horizontal Smooth Surface, Motion of bodies connected to a string, etc. Make use of the Physics Formulas prevailing and get a grip on several concepts.

Formula Sheet of Laws of Motion

1. First law (law of inertia) (define force)

Without external force body does not change itΓÇÖs state of rest or motion.

2. Second law (measure force)

\(\overrightarrow{\mathrm{F}}=\frac{\mathrm{d}\overrightarrow{\mathrm{p}}}{\mathrm{dt}}\) = m\(\overrightarrow{\mathrm{a}}\)

3. Third law (gives direction of force)

ΓÇ£Every action has equal and opposite reactionΓÇ¥
\(\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}\)
Laws Of Motion formulas img 1

4. Impulse

\(\Delta \overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}}-\overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{F}} \times \Delta \mathrm{t}\)

5. Motion in a lift

Case 1
If the lift is uncelebrated \(\overrightarrow{\mathrm{a}}\) = 0 (\(\overrightarrow{\mathrm{v}}\) = constant or zero) Apparent weight = actual weight w’ = w = mg

Case 2
Laws Of Motion formulas img 2
(a) If lift is accelerated upward (+ \(\overrightarrow{\mathrm{a}}\) = constant Γåæ)
w’ = mg + ma = m (g + a)
(b) If lift is accelerated upward with -ve acceleration
(- \(\overrightarrow{\mathrm{a}}\) = constant Γåæ)
w” = mg – ma = m(g – a)
If a = g, w’ = 0 (weightlessness)
If a > g then body comes in contact with ceiling of the lift.
w’ = – ve

6. Motion of a block on a horizontal smooth surface

Case 1
Laws Of Motion formulas img 3
R = mg
F = ma
or a = \(\frac{F}{m}\)

Case 2
Laws Of Motion formulas img 4
R = mg – F sin ╬╕
F cos ╬╕ = ma
or a = \(\frac{\mathrm{F} \cos \theta}{\mathrm{m}}\)

Case 3
Laws Of Motion formulas img 5
R = mg + F sin ╬╕
a = \(\frac{\mathrm{F} \cos \theta}{\mathrm{m}}\)

7. Motion of bodies in contact

Laws Of Motion formulas img 6
a = \(\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}}\)
If f1 = contact force between masses m1 and m2
f2 = contact force between masses m2 and m3
f3 = contact force between masses m3 and m4
then F = (m1 + m2 + m3 + m4) a
f1 = (m2 + m3 + m4) a
f2 = (m3 + m4) a
f3 = m4 a

8. Motion of connected bodies
Laws Of Motion formulas img 7
a = \(\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}}\)
F = (m1 + m2 + m3 + m4) a
T3 = (m1 + m2 + m3) a
T2 = (m1 + m2) a
T1 = m1 a

9. Motion of a body on a smooth inclined plane
Laws Of Motion formulas img 8
R = mg cos ╬╕
ma = mg sin ╬╕
or a = g sin ╬╕
Special case:
When the smooth plane is moving horizontally with a acceleration (b) as shown in fig.
Laws Of Motion formulas img 9
m (a + b cos ╬╕) = mg sin ╬╕ …(1)
m b sin ╬╕ = R – mg cos ╬╕ …(2)
solving above equation we get
a = g sin ╬╕ – b cos ╬╕
R = m (g cos ╬╕ + b sin ╬╕)
If a = 0 (means there is no relative motion between the blocks) then
b = g tan ╬╕
& If R = 0 (means body is released freely and all surfaces are smooth) then
b = – g cot ╬╕

10. Motion of two bodies connected by a string

Case 1
Laws Of Motion formulas img 10
If m2 > m1 then
m2 g – T = m2 a …(1)
and T – m1 g = m1 a …(2)
solving equation (1) & (2)
a = \(\frac{\left(m_{2}-m_{1}\right)}{\left(m_{1}+m_{2}\right)}\).g
and T = \(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\)g

Case 2
Laws Of Motion formulas img 11
m2g – T = m2a …(1)
and T – m1 g sin ╬╕ = m1 a …(2)
solving equation (1) & (2)
a \(\frac{\left(m_{2}-m_{1} \sin \theta\right)}{\left(m_{1}+m_{2}\right)}\).g
and T = \(\frac{m_{1} m_{2} g}{m_{1}+m_{2}}\)(1 + sin ╬╕)

Case 3
Laws Of Motion formulas img 12
m1 g sin ╬▒ – T = m1 a …(1)
and T – m2 g sin ╬▓ = m2 a …(2)
Solving equation (1) & (2)
a = \(\frac{g\left(m_{1} \sin \alpha-m_{2} \sin \beta\right)}{m_{1}+m_{2}}\)
T = \(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\)(sin ╬▒ + sin ╬▓)g
Note:-
If whole system is moving

  • Upwards
  • Down wards
  • Left or right,

with acceleration ΓÇ£aΓÇ¥ then replace ‘g’ with in

  • (g + a), in
  • (g – a) and in
  • \(\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}}\), respectively in above formulas.

Learn more physics concepts formulae all at one place from Physicscalc.Com a trusted and genuine site.