Laws of Motion Formulas
Quickly grab the opportunity and utilize the Laws of Motion Formulas to solve the related concept problems easily. Go through the Laws of Motion Formula Sheet & Tables and learn the concept in a simple manner. The Cheat Sheet of Laws of Motion includes Impulse, Motion in a Lift, Motion of a Block on a Horizontal Smooth Surface, Motion of bodies connected to a string, etc. Make use of the Physics Formulas prevailing and get a grip on several concepts.
Formula Sheet of Laws of Motion
1. First law (law of inertia) (define force)
Without external force body does not change itΓÇÖs state of rest or motion.
2. Second law (measure force)
\(\overrightarrow{\mathrm{F}}=\frac{\mathrm{d}\overrightarrow{\mathrm{p}}}{\mathrm{dt}}\) = m\(\overrightarrow{\mathrm{a}}\)
3. Third law (gives direction of force)
ΓÇ£Every action has equal and opposite reactionΓÇ¥
\(\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}\)
4. Impulse
\(\Delta \overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}}-\overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{F}} \times \Delta \mathrm{t}\)5. Motion in a lift
Case 1
If the lift is uncelebrated \(\overrightarrow{\mathrm{a}}\) = 0 (\(\overrightarrow{\mathrm{v}}\) = constant or zero) Apparent weight = actual weight w’ = w = mg
Case 2
(a) If lift is accelerated upward (+ \(\overrightarrow{\mathrm{a}}\) = constant Γåæ)
w’ = mg + ma = m (g + a)
(b) If lift is accelerated upward with -ve acceleration
(- \(\overrightarrow{\mathrm{a}}\) = constant Γåæ)
w” = mg – ma = m(g – a)
If a = g, w’ = 0 (weightlessness)
If a > g then body comes in contact with ceiling of the lift.
w’ = – ve
6. Motion of a block on a horizontal smooth surface
Case 1
R = mg
F = ma
or a = \(\frac{F}{m}\)
Case 2
R = mg – F sin ╬╕
F cos ╬╕ = ma
or a = \(\frac{\mathrm{F} \cos \theta}{\mathrm{m}}\)
Case 3
R = mg + F sin ╬╕
a = \(\frac{\mathrm{F} \cos \theta}{\mathrm{m}}\)
7. Motion of bodies in contact
a = \(\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}}\)
If f1 = contact force between masses m1 and m2
f2 = contact force between masses m2 and m3
f3 = contact force between masses m3 and m4
then F = (m1 + m2 + m3 + m4) a
f1 = (m2 + m3 + m4) a
f2 = (m3 + m4) a
f3 = m4 a
8. Motion of connected bodies
a = \(\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}}\)
F = (m1 + m2 + m3 + m4) a
T3 = (m1 + m2 + m3) a
T2 = (m1 + m2) a
T1 = m1 a
9. Motion of a body on a smooth inclined plane
R = mg cos ╬╕
ma = mg sin ╬╕
or a = g sin ╬╕
Special case:
When the smooth plane is moving horizontally with a acceleration (b) as shown in fig.
m (a + b cos ╬╕) = mg sin ╬╕ …(1)
m b sin ╬╕ = R – mg cos ╬╕ …(2)
solving above equation we get
a = g sin ╬╕ – b cos ╬╕
R = m (g cos ╬╕ + b sin ╬╕)
If a = 0 (means there is no relative motion between the blocks) then
b = g tan ╬╕
& If R = 0 (means body is released freely and all surfaces are smooth) then
b = – g cot ╬╕
10. Motion of two bodies connected by a string
Case 1
If m2 > m1 then
m2 g – T = m2 a …(1)
and T – m1 g = m1 a …(2)
solving equation (1) & (2)
a = \(\frac{\left(m_{2}-m_{1}\right)}{\left(m_{1}+m_{2}\right)}\).g
and T = \(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\)g
Case 2
m2g – T = m2a …(1)
and T – m1 g sin ╬╕ = m1 a …(2)
solving equation (1) & (2)
a \(\frac{\left(m_{2}-m_{1} \sin \theta\right)}{\left(m_{1}+m_{2}\right)}\).g
and T = \(\frac{m_{1} m_{2} g}{m_{1}+m_{2}}\)(1 + sin ╬╕)
Case 3
m1 g sin ╬▒ – T = m1 a …(1)
and T – m2 g sin ╬▓ = m2 a …(2)
Solving equation (1) & (2)
a = \(\frac{g\left(m_{1} \sin \alpha-m_{2} \sin \beta\right)}{m_{1}+m_{2}}\)
T = \(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\)(sin ╬▒ + sin ╬▓)g
Note:-
If whole system is moving
- Upwards
- Down wards
- Left or right,
with acceleration ΓÇ£aΓÇ¥ then replace ‘g’ with in
- (g + a), in
- (g – a) and in
- \(\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}}\), respectively in above formulas.
Learn more physics concepts formulae all at one place from Physicscalc.Com a trusted and genuine site.