Projectile Motion Formulas
Projectile Motion is a form of motion that is experienced by an object thrown into air which is subjected to acceleration due to gravity. Grab the opportunity and understand the concept of Projectile Motion better using the Projectile Motion Formulas List provided. You can get Formulas related to Projectile Motion, Projectile thrown parallel to the horizontal from height ‘h’, etc. in the below modules. Check out the Physics Formulas for various concepts and understand them easily.
Formulae for Projectile Motion
1. Projectile Motion:
Thrown at an angle ╬╕ with horizontal
\(\overrightarrow{\mathrm{u}}_{\mathrm{x}}\) = u cos ╬╕ \(\hat{\mathrm{i}}\); ax = 0
\(\overrightarrow{\mathrm{u}}_{\mathrm{y}}\) = u sin ╬╕ \(\hat{\mathrm{j}}\); \(\overrightarrow{\mathrm{a}}_{\mathrm{y}}=-\mathrm{g} \hat{\mathrm{j}}\)
(a) y = x tan ╬╕ – \(\frac{1}{2} \cdot g \cdot\left[\frac{x}{u \cos \theta}\right]^{2}\)
or y = x tan╬╕ \(\left[1-\frac{x}{R}\right]\)
(b) Time to reach maximum height (time of ascent/time of descent)
t = \(\frac{u \sin \theta}{g}=\frac{u_{y}}{a_{y}}\)
(c) Time of flight
T = \(\frac{2 u \sin \theta}{g}=\frac{2 u_{y}}{a_{y}}\)
(d) Horizontal range
R = \(\frac{u^{2} \sin 2 \theta}{g}\) = ux × T
(e) Maximum height
Hmax = \(\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{g}}=\frac{\mathrm{u}_{\mathrm{y}}^{2}}{2 \mathrm{a}_{\mathrm{y}}}\)
(f) Horizontal velocity at any time vx = u cos ╬╕ (remains same)
(g) Vertical component of velocity at any time vy = u sin ╬╕ – gt
(h) Resultant velocity \(\overrightarrow{\mathrm{v}}=\mathrm{v}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}\)
\(\overrightarrow{\mathrm{v}}=u \cos \theta \hat{\mathrm{i}}+(u \sin \theta-\mathrm{gt}) \hat{\mathrm{j}}\)
\(\mathrm{v}=|\overrightarrow{\mathrm{v}}|=\sqrt{\mathrm{u}^{2}+\mathrm{g}^{2} \mathrm{t}^{2}-2 \mathrm{ugt} \sin \theta}\)
and tan ╬▒ = \(\frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}_{\mathbf{x}}}\)
2. General Result:
- For maximum range ╬╕ = 45┬░, Rmax = \(\frac{u^{2}}{g}\)
and Hmax = \(\frac{R_{\max }}{4}\), at ╬╕ = 45┬░ and initial velocity u
Hmax = \(\frac{R_{\max }}{2}\), at ╬╕ = 90┬░ and initial velocity u - Change in momentum ╬ö\(\overrightarrow{\mathrm{P}}\) = – mgt \(\hat{j}\)
- For complete motion = -2 m u sin ╬╕ \(\hat{j}\)
- At highest point = – m u sin ╬╕ \(\hat{i}\)
- \(\overrightarrow{\mathrm{a}}_{\mathrm{x}}\) = -g sin ╬╕0\(\hat{\mathrm{i}}\)
- \(\overrightarrow{\mathrm{a}}_{\mathrm{y}}\) = -g cos ╬╕0\(\hat{\mathrm{j}}\)
- \(\overrightarrow{\mathrm{u}}_{\mathrm{x}}\) = u cos (╬╕ – ╬╕0)\(\hat{\mathrm{i}}\)
- \(\overrightarrow{\mathrm{u}}_{\mathrm{y}}\) = u sin (╬╕ – ╬╕0)\(\hat{\mathrm{j}}\)
- R = nH, ╬╕ = tan-1\(\left(\frac{\mathrm{A}}{\mathrm{n}}\right)\)
- At t = \(\frac{u}{g \sin \theta}\), velocity are ⊥ and v = u cot θ
- vavg = \(\frac{u}{2} \sqrt{1+3 \cos ^{2} \theta}\) for half motion
- KEhight = \(\frac{1}{2}\) m (u cos ╬╕)2 = \(\frac{1}{2}\) mu2cos2╬╕ = K0cos2╬╕.
3. Projectile thrown parallel to the horizontal from height ‘h’
ux = u vx = u
uy = 0 vy = -gt (upward)
(a) Equation y = –\(\frac{1}{2} g \frac{x^{2}}{u^{2}}\)
(b) Velocity at any time
v = \(\sqrt{u^{2}+g^{2} t^{2}}\)
tan ╬▒ = \(\frac{v_{y}}{v_{x}}\)
(c) Displacement S = \(x \hat{i}+y \hat{j}=u t \hat{i}-\frac{1}{2} g t^{2} \hat{j}\)
(d) Time of flight T = \(\sqrt{\frac{2 h}{g}}\)
(e) Horizontal Range = u\(\sqrt{\frac{2 h}{g}}\) = ux T
Projectile thrown from an inclined plane
(a) Time of flight T = \(\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{a}_{\mathrm{y}}}=\frac{2 \mathrm{u} \sin \left(\theta-\theta_{0}\right)}{\mathrm{g} \cos \theta_{0}}\)
R = u cos (╬╕ – ╬╕0) T – \(\frac{1}{2}\) g sin ╬╕0.T2
R = \(\frac{2 u^{2} \sin \left(\theta-\theta_{0}\right) \cos \theta}{g \cos ^{2} \theta_{0}}\)
Important for Rmax ╬╕ = \(\frac{\pi}{4}+\frac{\theta_{0}}{2}\) and Rmax = \(\frac{u^{2}}{g\left(1+\sin \theta_{0}\right)}\).
Maximum height Hmax = \(\frac{\mathrm{u}_{\mathrm{y}}^{2}}{2 \mathrm{a}_{\mathrm{y}}}=\frac{\mathrm{u}^{2} \sin ^{2}\left(\theta-\theta_{0}\right)}{2 \mathrm{g} \cos \theta_{0}}\)
Have a look at the One-Stop Destination Physicscalc.Com for Physics Formulas covering everything right from basic to advanced level.