Rotational Motion Formulas
Have you ever wondered how to understand the Rotational Motion concept in an easy way? You can look at the Rotational Motion Formulas provided here for quick reference. Master the concept of Rotational Motion by accessing the Rotational Motion Cheat Sheet & Tables here. Learn the formulas and implement them during your calculations and arrive at the solutions easily. Make use of the Physics Formulas existing to clear all your ambiguities.
Rotational Motion Formulae List
1. Angular displacement
╬╕ = \(\frac{arc}{radius}=\frac{\mathrm{s}}{\mathrm{r}}\) radian
2. Angular velocity
Average angular velocity
\(\bar{\omega}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}\) rad/s
Instantaneous angular velocity
ω = \(\frac{\mathrm{d} \theta}{\mathrm{dt}}\) rad/s
ω = 2πn = \(\left(\frac{2 \pi}{T}\right)\)
3. Angular acceleration
Average angular acceleration
\(\bar{\alpha}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}\) rad/s2
Instant angular acceleration
\(\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}\)rad/s2
4. Relation between linear velocity and angular velocity
v = ωr = 2πnr = \(\frac{2 \pi r}{T}\), \(\overrightarrow{\mathbf{v}}=\vec{\omega} \times \vec{r}\)
5. Relation between linear acceleration and angular acceleration
a = \(\frac{d v}{d t}=r \frac{d \omega}{d t}\) = r╬▒
Tangential acceleration
\(\overrightarrow{a_{t}}=\vec{\alpha} \times \vec{r}\)
Radial acceleration
\(\overrightarrow{\mathrm{a}}_{\mathrm{r}}=\vec{\omega} \times \overrightarrow{\mathrm{v}}\)
Resultant acceleration
\(\vec{a}=\vec{a}_{t}+\vec{a}_{r}\)
6. Equations of rotational motion
ω2 = ω1 + αt
θ = ω1t + \(\frac{1}{2}\)αt2
ω22 = ω12 + 2αθ
╬╕nth = ╧ë1 + \(\frac{\alpha}{2}\) (2n – 1)
7. Moment of inertia
I = m1r12 + m2r22 + m3r32 + = \(\sum_{i=1}^{n} m_{i}{\mathbf{r}}_{i}^{2}\)
For a body with uniform mass distribution
I = Γê½ r2 dm
8. Theorems of moment of inertia
- Theorem of perpendicular axes Iz = Ix + Iy. It is applicable only for lamina(planar body).
- Theorem of parallel axes –
I = IG + Md2 = MK2 + Md2
9. Moment of inertia of diatomic molecule
I = m1r12 + m2r22 = \(\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)\) r2 = ┬╡r2
10. Moment of inertia of some objects
Ring:
I = MR2(axis)
I = MR2/2 (diameter)
I = 2 MR2 (tangential to rim, parallel to axis)
I = (3 /2)MR2 (tangential to rim, parallel to diameter)
Disc:
I = \(\frac{1}{2}\) MR2 (axis)
I = \(\frac{1}{4}\) MR2 (diameter)
I = \(\frac{3}{2}\) MR2 (tangential to rim, parallel to axis)
I = \(\frac{5}{4}\) MR2 (tangential to rim, parallel to diameter)
Cylinder:
About axis I = \(\frac{1}{2}\)MR2
perpendicular the length and passing through C.M.
I = \(\frac{M L^{2}}{12}+\frac{M R^{2}}{4}\)
Thin rod:
I = \(\frac{1}{12}\)ML2 (about centre)
I = \(\frac{1}{3}\)ML2 (about one end)
Hollow sphere:
Idia = \(\frac{2}{3}\)MR2
Itangential = \(\frac{5}{3}\)MR2
Solid sphere:
Idia = \(\frac{2}{5}\)MR2
Itangential = \(\frac{7}{5}\)MR2
Rectangular plate
Ic = \(\frac{M\left(L^{2}+B^{2}\right)}{12}\)
Cube:
I = \(\frac{1}{6}\)Ma2
Annular disc
I = \(\frac{1}{2}\)M(R12 + R22)
Right circular cone:
I = \(\frac{3}{10}\)MR2
Triangular Lamina:
I = \(\frac{1}{6}\)MH2(about base axis)
11. Radius of gyration
I = MK2 = \(\sum_{i=1}^{n} m_{i} r_{i}^{2}\)
K = \(\left(\frac{\mathrm{I}}{\mathrm{M}}\right)^{1 / 2}=\left[\frac{\sum \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}}{\mathrm{M}}\right]^{1 / 2}\)
12. Torque
\(\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}\); \(|\vec{\tau}|\) = rFsinθ, τ = Iα
Work done by torque W = \(\int_{\theta_{1}}^{\theta_{2}} \tau \mathrm{d} \theta\)
Work done in twisting a wire W = \(\int_{0}^{\theta}(\mathrm{c} \theta) \mathrm{d} \theta=\frac{1}{2} \mathrm{c} \theta^{2}\)
13. Angular momentum
\(\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}=m(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}})\)
\(|\overrightarrow{\mathrm{L}}|\) = rp sin ╬╕
\(\overrightarrow{\mathrm{L}}=\mathrm{I} \vec{\omega}\) and \(\vec{\tau}=\frac{d \vec{L}}{d t}\)
In absence of external torque i.e., \(\vec{\tau}\) = 0,
so that L = Iω = constant, which is law of conservation of angular momentum.
14. Angular impulse
ΔL = \(\int_{0}^{t} \tau \mathrm{dt}\)
15. Rotational kinetic energy
Erot = \(\frac{1}{2}\) Iω2 = \(\frac{\mathrm{L}^{2}}{2 \mathrm{I}}\)
or \(\frac{\mathrm{L}^{2}}{2 \mathrm{I}}=\frac{\overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{L}}}{2 \mathrm{I}}\)
Rotational power
Prot = \(\vec{\tau} \cdot \vec{\omega}\)
Etotal = Etrans + Erot = \(\frac{1}{2}\)Mv2 + \(\frac{1}{2}\) Iω2
Etotal = \(\frac{1}{2}\)Mv2\(\left(1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}\right)\)
16. Motion on an inclined plane
(A) For translational motion only (without rotation)
\(\frac{1}{2}\) mv2 = mgh, velocity v = \(\sqrt{2 \mathrm{gh}}=\sqrt{2 \mathrm{gs} \sin \theta}\)
Acceleration f = g sin ╬╕, time t = \(\left(\frac{2 s}{g \sin \theta}\right)^{1 / 2}\)
(B) For rolling motion (translational + rotational)
\(\frac{1}{2}\)mv2 \(\left(1+\frac{K^{2}}{R^{2}}\right)\) = mgh
Velocity v \(=\left[\frac{2 g \sin \theta}{\left(1+\frac{K^{2}}{R^{2}}\right)}\right]^{1 / 2}=\left[\frac{2 g h}{\left(1+\frac{K^{2}}{R^{2}}\right)}\right]^{1 / 2}\)
Acceleration f = \(\frac{g \sin \theta}{\left(1+\frac{K^{2}}{R^{2}}\right)}\)
Time t = \(\sqrt{\frac{2 \mathrm{s}}{\mathrm{f}}}\) = \(\left[\frac{2 s\left(1+\frac{K^{2}}{R^{2}}\right)^{1 / 2}}{g \sin \theta}\right]^{1 / 2}\)
17. Motion of a body tied to a string wrapped on a cylinder
Linear acceleration of the body a = \(\frac{g}{\left(1+\frac{I}{m r^{2}}\right)}\)
Tension in the string T = \(\frac{m g}{\left(1+\frac{m r^{2}}{I}\right)}\)
Angular acceleration of the cylinder
╬▒ = \(\frac{a}{r}=\frac{g}{r\left(1+\frac{I}{m r^{2}}\right)}\)
18. Compound pendulum
Periodic time
T = 2π\(\left[\frac{\frac{K^{2}}{\ell}+\ell}{g}\right]^{1 / 2}\) = 2π\(\sqrt{\frac{\mathrm{I}}{\mathrm{Mg} \ell}}\)
T = 2π \(\left[\frac{L}{g}\right]^{1 / 2}\)
I = M(K2 + l2)
K → Radius of gyration about C.M.
Length of equivalent simple pendulum
L = \(\left(\frac{K^{2}}{\ell}+\ell\right)\)
Tmin =2π\(\sqrt{\frac{2 \mathrm{K}}{\mathrm{g}}}\)
19. Centre of mass
About centre of mass \(\sum_{i=1}^{n} m_{i} \vec{r}_{i}\) = 0
Position of centre of mass
\(\overrightarrow{\mathrm{r}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{r}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{r}}_{2}+\ldots .+\mathrm{m}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\ldots .+\mathrm{m}_{\mathrm{n}}}\)
Velocity of centre of mass
\(\overrightarrow{\mathrm{v}}_{\mathrm{cm}}=\frac{\sum_{i=1}^{n} m_{i} \vec{v}_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\overrightarrow{\mathrm{P}}}{\mathrm{M}}\)
20. C.M. for two particles system
\(\overrightarrow{\mathrm{X}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{x}}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}\),
\(\overrightarrow{\mathrm{y}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{y}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{y}}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}\),
\(\overrightarrow{\mathbf{z}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{z}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{z}}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}\)
\(\overrightarrow{\mathrm{V}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{v}}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}\),
\(\overrightarrow{\mathrm{a}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathrm{a}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{a}}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}\)
Simplify your work of calculating the related problems by availing the Formula List Provided at Physicscalc.Com