Simple Harmonic Motion Formulas
Harmonic Motion is an important topic and is considered a difficult one by most of the people. To help all such people we have jotted down the Simple Harmonic Motion Formulas all in one place.  Avail them during your work and make your job simple while solving related problems. Formula Sheet for Simple Harmonic Motion covers Restoring Force, Restoring Couple, Displacement, and Velocity in S.H.M, Acceleration, etc. Make the most out of our Physics Formulas and learn all the concepts effectively.
List of Simple Harmonic Motion Formulae
1. Simple harmonic motion
A oscillatory motion in which the restoring force is proportional to displacement and directed opposite to it.
2. Restoring force
F = -kx
3. Restoring couple
τ = -Cθ
4. Equation of motion
Linear S.H.M.
\(\frac{d^{2} x}{d t^{2}}\) + ω2x = 0, where ω2 = \(\frac{k}{m}\)
Angular S.H.M.
\(\frac{d^{2} \theta}{d t^{2}}\) + ω2θ = 0, where ω2 = \(\frac{C}{I}\)
5. Displacement in S.H.M.
x = a sin (ωt + Φ)
where a = amplitude, ω = angular frequency = 2πn = \(\frac{2 \pi}{\mathrm{T}}\)
(ωt + Φ) = phase at time t, Φ = initial phase angle or phase constant.
6. Velocity in S.H.M.
v = \(\frac{d x}{d t}\) aω cos(ωt + Φ)
or v = ╧ë(a2 – x2)1/2
vmax = aω, when x = 0
& vmin = 0, when x = a
7. Acceleration in S.H.M.
f = \(\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}\) = -ω2 a sin (ωt + Φ)
or f = -ω2x
fmax = ω2a, at extreme position
& fmin = 0, when x = 0
8. Period and frequency
Linear S.H.M.
T = \(\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}\)
& frequency n = \(\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}\)
Angular S.H.M.
T = \(2 \pi \sqrt{\frac{I}{C}}\), n = \(\frac{1}{2 \pi} \sqrt{\frac{C}{I}}\)
9. Kinetic energy in S.H.M.
KE = \(\frac{1}{2}\) mv2 = \(\frac{1}{2}\) mω2a2cos2 (ωt + Φ)
= \(\frac{1}{2}\) ka2 cos2 (ωt + Φ)
or KE = \(\frac{1}{2}\)m╧ë2(a2 – x2) = \(\frac{1}{2}\) k(a2 – x2)
(KE)max = \(\frac{1}{2}\) ka2 = \(\frac{1}{2}\)mω2a2 when x = 0.
(KE)min = 0. when x = ┬▒ a.
Mean KE with respect to displacement = \(\frac{1}{3}\) ka2
Mean KE with respect to time = \(\frac{1}{4}\) ka2.
10. Potential energy in S.H.M.
PE = U(x) = \(\frac{1}{2}\) kx2 = \(\frac{1}{2}\) mω2x2
= \(\frac{1}{2}\) ka2 sin2 (ωt + Φ)
(PE)max = \(\frac{1}{2}\) ka2 = \(\frac{1}{2}\) mω2a2
= 2π2mn2a2, when x = ± a.
(PE)min = 0, when x = 0.
Mean PE with respect to displacement = \(\frac{1}{6}\) ka2
Mean PE with respect to time = \(\frac{1}{4}\) ka2.
11. Total energy in S.H.M
Total Energy E = KE + PE
\(\frac{1}{2}\) ka2 = \(\frac{1}{2}\) mω2a2 = 2mπ2n2a2
12. Period of oscillation of mass joined to a spring
T = 2π \(\sqrt{\frac{m}{k}}\)
k → spring constant
13. Spring constant k
k ∝ \(\frac{1}{\ell}\)
If spring cut in two parts l1 & l2 then
k1 = \(\frac{\ell}{\ell_{1}} \mathbf{k}=\frac{\ell_{1}+\ell_{2}}{\ell_{1}} \mathbf{k}p\), k2 = \(\frac{\ell_{1}+\ell_{2}}{\ell_{2}} \mathrm{k}\)
If spring cut in to n equal parts then spring constant of each part will be k’ = nk
14. Springs in parallel
Effective force constant k’ = k1 + k2 + …….. + kn
T’ = 2╧Ç \(\sqrt{\frac{m}{k^{\prime}}}\)
For n identical springs k’ = nk
T’ = \(\frac{T}{\sqrt{n}}\)
T → Time period due to one spring only Springs in series
15. Spring in series
If effective force constant is k’ then
\(\frac{1}{k^{\prime}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\ldots \ldots \ldots . .+\frac{1}{k_{n}}\)
For identical springs \(\frac{1}{k^{\prime}}=\frac{n}{k}\)
and T’ = T\(\sqrt{n}\)
For two springs \(\frac{1}{k^{\prime}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}\)
or k’ = \(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\)
T’ = \(2 \pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}\)
16. Two masses connected by two ends of a spring
T = 2π\(\sqrt{\frac{\mu}{\mathrm{k}}}\)
where ┬╡ = \(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\) = Reduced mass.
17. Oscillations of a liquid in a U-tube
T = 2π \(\sqrt{\frac{h}{g}}\) h is vertical height of liquid column.
18. Oscillations of a floating body
Cylindrical body
T =2 π\(\sqrt{\frac{m}{a d g}}\)
T = 2π\(\sqrt{\frac{h}{g}}\),
m = mass of immersed part
Rectangular body T = 2π\(\sqrt{\frac{h}{g}}\)
d → density of liquid,
a → cross sectional area,
m → mass of body.
h → A height of block or cylinder inside the liquid
19. Period of a simple pendulum
T = 2π\(\sqrt{\frac{\ell}{g}}\) (l << R)
T = 2π\(\sqrt{\frac{\mathrm{R}}{\mathrm{g}\left(1+\frac{\mathrm{R}}{\ell}\right)}}\)
when l is large, of the order of R.
T = 2π\(\sqrt{\frac{\mathrm{R}}{\mathrm{g}}}\)
when l → ∞, T = 84.4 minute
Motion of a pendulum is simple harmonic only when the maximum angular displacement ╬╕0 is small.
20. Second pendulum
T = 2 second; l = 96 cm.
21. Conical pendulum
T = 2π\(\sqrt{\frac{r}{g \tan \theta}}=\sqrt{\frac{L \cos \theta}{g}}\)
= 2π\(\left[\frac{\sqrt{L^{2}-r^{2}}}{g}\right]^{1 / 2}=2 \pi \sqrt{\frac{\ell}{g}}\)
22. Period in a reference frame moving with acceleration ΓÇÿaΓÇÖ in a horizontal plane
T = 2π\(\left[\frac{\ell}{\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}}}\right]^{1 / 2}\)
23. Oscillation of pendulum in a lift
Lift moving up with an acceleration a,
T = 2π\(\sqrt{\frac{\ell}{\mathrm{g}+\mathrm{a}}}\)
Lift moving down with an acceleration a,
T = 2π\(\sqrt{\frac{\ell}{g-a}}\)
Lift falling freely (a = g), T = ∞
Lift moving with a uniform speed (a = 0),
T = 2π\(\sqrt{\frac{\ell}{\mathrm{g}}}\)
24. Oscillations of pendulum having bob of density p in a liquid of density d
T = 2π\(\sqrt{\frac{\ell}{g\left(1-\frac{d}{\rho}\right)}}=2 \pi \sqrt{\frac{\ell}{g\left(1-\frac{1}{n}\right)}}\)
where \(\frac{\mathrm{d}}{\rho}=\frac{1}{\mathrm{n}}\) or n = \(\frac{\rho}{\mathrm{d}}\)
25. Vertical oscillations of a body suspended from a wire of YoungΓÇÖs modulus Y
T = 2π\(\sqrt{\frac{m L}{Y A}}\)
A → Cross sectional Area of wire
m → mass of the body
L → Length of the wire
Y → Young’s modulus of elasticity
26. Oscillation of a small ball placed in a concave glass
T = 2π\(\sqrt{\frac{\mathrm{R}}{\mathrm{g}}}\)
If you are looking for a place where you can find formulae for different concepts of Physics then Physicscalc.Com can be a great place for all your concerns.